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Abstract-A heavy rigid platform is supported by thin elastic legs. The governing equations for large
deformations are formulated and solved numerically by homotopy and quasi-Newton methods.
Nonlinear phenomena such as nonuniqueness, catastrophe and hysteresis are found. A global
critical load for nonlinear stability is introduced.

1. INTRODUCTION

Consider a structure composed of a heavy platform supported by four columns. Such a
basic table-like configuration is fairly common in engineering construction. Our question
is, if the legs are elastic, what is the maximum platform weight that can be supported?

The buckling of a rectangular frame has been considered before [e.g. Timoshenko and
Gere (1961), McCormac and Elling (1988) and Gaylord and Gaylord (1990»). It can be
shown from linear analysis that the initial buckling of a supported rigid platform is due to
side sway. The critical buckling load on each leg is n 2EI/L2

, where L is the length of the
leg and EIis its flexural rigidity.

Linear stability analysis, however, investigates the bifurcation or infinitestimal devi
ation from equilibrium. For large perturbations, such as those due to an earthquake, the
maximum load that can be supported may be much smaller than that predicted by the
linear theory.

2. FORMULATION

We illustrate this problem by the deformation of a two-dimensional table shown in
Fig. I (a), This is also equivalent to the four-legged table buckling along a symmetry axis.
Let the height of the legs be L and spaced fJL apart. The total load ofthe platform is acting
at the center of gravity. We assume the platform to be rigid and the legs to be perfectly
elastic.

Normalize all lengths by L and all forces by EI/L2
• The general deformed shape and

the forces F;, G, moments mi (i = 1,2) at the bases of leg 1 and leg 2 are shown in Fig. l(b).
Balancing the local moment on an elemental segment [Fig. I(c)] we find

(I)

Here S is the arc length and (Ji is the local inclination angle with respect to the verticaL If
the legs are thin enough, the Euler-Bernoulli (elastica) law
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Fig. I. The coordinate system, applied and internal forces.

dO
m=-

ds

is locally satisfied. Thus for equilibrium, the governing equations are

The kinematic conditions are

(2)

(3)

(4)

dYI . £I&= SlnuI,

(5)

Given the total load Fand spacing pthere are 10 unknowns: 0h dOdds, 0z, dOz/ds, X h Yh

XZ, Yz, Fz, G, (F1 = F - Fz). The 10 boundary conditions are, at the base

Yz(O) = p,
and at the top,

pcos 01(1) = yz(1) -YI (1),

The final condition is a global moment balance about the origin,

Nontrivial solutions of eqns (3)-(11) are sought.

(6)

(7)

(8)

(9)

(10)

(11)
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3. LIMITING CASES

As P-+ 00, the platform necessarily remains horizontal; we find

F
F I = F2 = "2' G = O.

The governing equation is then

with

6;(0) = 6;(1) = O.

Equations (13) and (14) can be linearized to give the bifurcation condition

We are concerned with the lowest buckling mode n = I. Thus
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(12)

(13)

(14)

(15)

(16)

For nonlinear deformation, the solution to eqns (13) and (14) can be expressed in terms of
elliptic functions ffF. Multiply (13) by 0' and integrate. The constant of integration is
determined by observing that the maximum angle y occurs at the symmetry point s = 1/2.
Integrating again gives, in the notation of Abramowitz and Stegan (1972),

s _ rll(S) dt = 2 ffF(~1 2 ),

Jo JF(cos t-cos y) JF(I-cos y) 2 I-cos y

where y = O(nis implicit in the solution.
The vertical displacement of the center of gravity is

(17)

(18)

The force-displacement relation of eqn (17) shows regular pitch-fork bifurcation at 211: 2,

then force continues to increase with displacement.
When p= 0 the two legs coalesce into one. The system is equivalent to a standing

column with a tip load at the free end. The governing equation is still eqn (13) but with
boundary conditions

dO·
6;(0) = d: (I) = O.

The buckling force for the lowest mode is

(19)

(20)

The solution and the force-displacement relations show similar behavior to the p-+ 00 case.

4. NUMERICAL METHODS

For finite nonzero P, the bifurcation, or linear stability, is still governed by the side-sway
mode or Fc = 211:2

• Analytic post-buckling solutions, however, are almost impossible since
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the boundary conditions cannot be applied to (), which is implicit in the elliptic functions.
Thus a numerical solution is necessary.

The boundary value problem is defined by eqns (3)-(5) with boundary conditions (6)
(II). We have the unknowns F, F h {3, G. WI (0) and ()'2(0). Since there are only four boundary
conditions at 1, we can only solve for four variables; the rest must be given as parameters
of the problem. We use F and {3 as the problem parameters. The unknowns are ()'I (0),
();(O), G and Fl'

Let

(21)

and let ()1(1]; V), ()2(1]; V), x 1(1]; V), X2(1]; V), y,(1]; V), Y2(1]; V) be the solution to the
initial value problem given by eqns (3)-(7) with unknown values specified by V. The original
two point boundary value problem is mathematically equivalent to solving the nonlinear
system of equations

() I (I; V) - () 2(I; V)

{3 cos «() I (I; V)) - Y2(I; V) +Y I (l; V)

'¥(V) = {3 sin «()I (I; V)) -XI (I; V) +X2(1; V) = O. (22)

F
()'I (0) +()'2(0)- 2[YI(I; V)+Y2(1; V)]+F2{3

The technique used is to guess at values for V and solve the initial value problem
equations (3)-(7) augmented with V. The software used for solving the initial value problem
was the subroutine ODE from ODEPACK (Shampine and Gordon, 1975). Then '¥ is
evaluated and a new approximation to V is computed. This technique is referred to as
shooting (Keller, 1976).

This problem has multiple solutions for certain F and {3 values. The trivial solution
V = (0,0,0, Fj2Y is a solution for all F and {3. A quasi-Newton method, implemented in
the subroutine HYBRJ from the MINPACK system (More et ai., 1980), was used to
attempt to solve (22). However, starting points close enough to a nontrivial solution for
the quasi-Newton method to converge to the solution could not be found. HYBRJ would
either become stuck in a local minimum of '¥t'¥ or converge to the trivial solution.

Next, a globally convergent homotopy based nonlinear system solver, subroutine
FIXPDF from the HOMPACK (Watson et al., 1987) suite of codes, was used. This method
tracks the zero curve of

Pa(V; A) = A'¥(V)+(I-A)(V-a), (23)

starting with A = O. Pa(V; 0) = 0 when V = a, so a solution is known for Pa(V; A) = 0
when A = O. From this starting point solutions of Pa( V; A) = 0 are tracked until A = 1.
The HOMPACK codes track this curve allowing A to decrease also. This is needed for
many nonlinear systems and is not provided by most standard continuation methods.

The homotopy method did not have problems with local minima like the quasi-Newton
methods. Whereas, FIXPDF always converged, it converged to the trivial solution. Hence,
the problem was reformulated into an equivalent problem without a trivial solution. To
accomplish this, the roles of ()'I (0) and F were reversed. SO ()'I (0) was a parameter (set to a
nonzero value to give a nontrivial solution) and F was placed in V. FIXPDF found a
solution to this problem. Using this solution (a set of F, {3, ()'I(O), ()'2(0), F, F I), which is
also a solution to eqns (3)-(11), as a starting point to HYBRJ, problems with slightly
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different F and Pwere solved. Too large a step size could not be taken in For P(especially
p) or HYBRJ would not converge.

For a fixed P, we want to track the zero curve r of

'P(V; F) (24)

0.5

0.25

as F varies between some Fa and Fm' This would be possible using HYBRJ if the solution
V = V(F) along the zero curve r. If V is not a function of F along r, HYBRJ cannot be
used to advance the solution from a prior solution (Fa, Va) because F can either increase
or decrease along r. HOMPACK is designed to solve such problems, however, and the
subroutine STEPS from HOMPACK can be used to trace r between any two connected
solutions (Fa, Va) and (Fm , Vm ).

The bifurcation diagrams (using vertical displacement of the midpoint =
1-(x](1)+x2(1»j2 as the independent variable) were produced using the zero curve
results as input to the initial value solver ODE to get x](l) and X2(1). The frames were
plotted by reading V into Mathematica (Wolfram, 1988) and having it solve the initial
value problem for Xj, YI and X2, Y2, then performing a parametric plot of these functions.

5. RESULTS AND DISCUSSION

Figure 2 shows the vertical displacement J versus load F for various normalized spacing
p. The limiting case P= 0 is represented by the left dashed line starting from its critical
load Fc = n 2j2. This is the load-displacement curve for a fixed-free column [see e.g. Timo
shenko and Gere (1961)]. The limiting case for P= 00 is governed by the right dashed
curve, starting from the critical load Fc = 2n 2

• This case is the same as the deformation of
a fixed-fixed column. The displacements for both limiting cases rise monotonically with
increased F after buckling.

Ofgreat interest are the curves for finite nonzero p. Incipient buckling is always through
side sway from Fc = 2n 2

• In general for small displacements, the curves tend to follow the
P= 00 limit while for larger displacements the curves seem to switch to the p= 0 limit. As
a result, the curves are no longer monotonic and highly nonlinear.

Take, for example, the square frame p= I whose force-displacement curve is shown
in Fig. 3. As the load is gradually increased, the frame remains square until Fc = 2n2 is
reached. Then the frame side sways through states A and B. Any further increase in F
causes a catastrophic jump to state G, accompanied perhaps with violent oscillations to
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Fig. 2. Vertical displacement <5 ofcenter ofgravity as a function of load F. Dashed lines are limiting
cases. fJ = 0, 0.125, 0.25, 0.5, 1.l095, 2.516,00 (left to right).
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Fig. 3. Vertical displacement versus load for fJ = I case. Note hysteresis loop IBGDl.

Fig. 4. Deformed configurations in the loop corresponding to states I, B, D, G (top to bottom),
shown in Fig. 3.

dissipate excess energy. Now if F is decreased from state G, the frame follows states E, D,
then if F decreases further, there is a sudden snap-back into the square frame at state I.
Some configurations for the hysteresis loop are shown in Fig. 4. Notice the range of multiple
solutions for 18.84 < F < 22.37. The three solutions for the same F = 21.2 are shown in
Fig. 5. Since the segment BCD in Fig. 3 has negative slope (increased displacement causes
negative work) state C can never be realized in practice. Multiple solutions occur for the
range 0 < f3 < 2.516.

The usual definition of a statically stable structure is one which returns to its unde
formed state after small perturbations are removed. Thus a vertical elastic fixed-free column
is stable if F < Fe = n 2j2 and for our frames this stability criteria is F < Fe = 2n 2

• However,
the bifurcation curves of our frames are usually not monotonic as that of an Euler column.
Figure 3 shows the frame may not be stable even for F < Fe in the range 18.8 < F < 2n 2

, i.e.
a large enough perturbation (in b) may force the frame to settle on a state on the DE
segment and does not return to the undeformed state.

Fig. 5. Multiple solutions for the same F = 21.2 (A, C, E, in Fig. 3, top to bottom) fJ = 1.
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Fig. 6. Global critical load Fge as a function of p.

Let us define the global critical load under which the structure would return to its
undeformed state however large the disturbances. For example ifF < Fgc = 18.8, our square
frame is globally stable. Such an index is extremely useful for flexible structures prone to
large disturbances, e.g. earthquakes. Figure 6 shows the computed Fgc as a function of p.
When p= 0, Fgc is n2j2 and rises with puntil p= 1.1095, then it remains constant at 2n2

when p is further increased. We see that for small p, Fgc is significantly lower than the
critical load of 2n 2 for side sway under small disturbances.

In our large deformation analyses, we have allowed legs and platform and "ground"
to cross each other as in state G of Fig. 4. These situations are physically possible. Restraints
on deformation only increase stability and Fgc would be a safer upper bound.
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